Successful Local Anesthesia
FOR RESTORATIVE DENTISTRY AND ENDODONTICS

Al Reader, DDS, MS
Professor and Director of Advanced Endodontic Program
College of Dentistry
The Ohio State University
Columbus, Ohio

John Nusstein, DDS, MS
Associate Professor and Chair of the Division of Endodontics
College of Dentistry
The Ohio State University
Columbus, Ohio

Melissa Drum, DDS, MS
Assistant Professor and Director of Predoctoral Endodontics
College of Dentistry
The Ohio State University
Columbus, Ohio

Quintessence Publishing Co, Inc
São Paulo, New Delhi, Moscow, Prague, and Warsaw
Table of Contents

Dedication vi
Preface vii
Acknowledgments viii

1. **Clinical Factors Related to Local Anesthesia**
 1

2. **Mandibular Anesthesia**
 29

3. **Maxillary Anesthesia**
 65

4. **Supplemental Anesthesia**
 89

5. **Clinical Tips for Management of Routine Restorative Procedures**
 119

6. **Endodontic Anesthesia**
 131

7. **Clinical Tips for Management of Specific Endodontic Situations**
 149

Index 165
Dedication

This book is dedicated to the current and former endodontic graduate students who shared our goal of profound pulpal anesthesia.
Preface

Why do patients avoid going to the dentist? According to a survey by the American Dental Association,¹ fear of pain is the greatest factor that prevents patients from visiting their dentist. Additional surveys²,³ have found that 90% of dentists have some anesthetic difficulties during restorative dentistry procedures. Because adequate pulpal anesthesia is a clinical problem, we and other authors have performed a number of research studies on local anesthesia over the last 25 years. We are excited to present some of these findings in this book.

Profound pulpal anesthesia is a cornerstone to the delivery of dental care. Administration of local anesthesia is one of the most common procedures in clinical practice. It is invariably the first procedure we perform, and it affects almost everything we do during that appointment. If the patient is not adequately anesthetized and you have some extensive restorative work planned, difficulties arise. The information in this book explains why problems occur and offers clinical solutions to help clinicians stay on schedule.

Fortunately, local anesthesia has evolved tremendously over the last 20 years just as the materials and techniques have evolved in restorative dentistry and endodontics. The current technology and drug formulations used for local anesthesia have made it so much easier to treat patients successfully. We now have the ability to anesthetize patients initially, provide anesthesia for the full appointment, and reverse some of the effects of soft tissue anesthesia if desired. Priceless!

This book covers the research-based rationale, advantages, and limitations of the various anesthetic agents and routes of administration. A special emphasis is placed on supplemental anesthetic techniques that are vital to the practice of dentistry. However, this book does not cover the basic techniques utilized for the delivery of local anesthetics because that information is readily available elsewhere in textbooks and publications.

In addition, this book emphasizes information for the restorative dentist and endodontist because the requirements for pulpal anesthesia are different than for oral surgery, implant dentistry, periodontics, and pediatric dentistry. Eighty-five percent of local anesthesia teaching in dental school is done by oral and maxillofacial surgery departments,⁴ and while they do an excellent job, it is sometimes difficult for oral surgeons to appreciate the requirements for pulpal anesthesia in restorative dentistry and endodontic therapy.

Throughout the book, the information has been divided into specific topics so it is understandable and easy to reference. When indicated, summary information has been provided. References to published literature are included in the chapters because clinicians within the specialty of endodontics (of which we are members) communicate with each other by quoting authors and studies. We also think it is important to credit the authors for their contributions to the literature on local anesthesia.

This book is a clinical adjunct to help you successfully anesthetize patients using the newest technology and drugs available. Indeed, the information presented here will help you to provide painless treatment. Pulpal anesthesia will be emphasized throughout this book. That is, pulpal anesthesia will be required by the restorative dentist and endodontist in order to perform painless treatment. We think that is a worthy goal for the dental profession.

References

Acknowledgments

We want to acknowledge the time spent away from our spouses (Dixie Reader, Tammie Nusstein, and Jason Drum) in completing this work. We are so grateful they were willing to help us produce a thoughtful addition to local anesthesia.

All royalties from the sale of this book will be equally divided between the American Association of Endodontist's Foundation and The Ohio State University Endodontic Graduate Student Research Fund to support further research on anesthesia and pain control.
Clinical Factors Related to Local Anesthesia

After reading this chapter, the practitioner should be able to:

- Discuss the clinical factors related to local anesthesia.
- Provide ways of confirming clinical anesthesia.
- Describe issues related to local anesthesia.
- Explain the effects anxiety has on local anesthesia.
- Discuss the use of vasoconstrictors.
- Characterize injection pain.
- Evaluate the use of topical anesthetics.
- Discuss alternative modes of reducing pain during injections.

Clinical pulpal anesthesia is dependent on the interaction of three major factors: (1) the dentist, (2) the patient, and (3) local anesthesia (Fig 1-1). The dentist is dependent on the local anesthesia agents as well as his technique. In addition, the dentist is dependent on the interaction with the patient (rapport/confidence). How the patient interacts with the administration of local anesthesia is determined by a number of clinical factors.

Confirming Pulpal Anesthesia in Nonpainful Vital Teeth

Lip numbness

A traditional method to confirm anesthesia usually involves questioning patients by asking if their lip is numb (Fig 1-2). Although lip numbness can be obtained 100% of the time, pulpal anesthesia may fail in the mandibular first molar in 23% of patients.\(^1\)\(^-\)\(^16\) Therefore, lip numbness does not always indicate pulpal anesthesia. However, lack of lip numbness for an inferior alveolar nerve block (IANB) does indicate the injection was “missed,” and pulpal anesthesia will not be present.

IN CONCLUSION, lip numbness does not always indicate pulpal anesthesia.

Soft tissue testing

Using a sharp explorer to “stick” the soft tissue (gingiva, mucosa, lip, tongue) in the area of nerve distribution (Fig 1-3) has a 90% to 100% incidence of success.\(^2\)\(^-\)\(^5\) Regardless, pulpal anesthesia may still not be present for the mandibular first molar in 23% of patients.\(^1\)\(^-\)\(^16\) Negative mucosal sticks usually indicate that the mucosal tissue is anesthetized.

IN CONCLUSION, the absence of patient response to sharp explorer “sticks” is a poor indicator of pulpal anesthesia.
Commencing with treatment

The problem with commencing treatment without confirming anesthesia is there is no way to know if the patient is numb until we start to drill on the tooth. This may create anxiety for both the patient and the dentist. A typical scenario involving a crown preparation on a mandibular molar can become problematic if the patient feels pain when the mesiobuccal dentin is reached with the bur. If the patient reacts to the pain, the dentist may say, “Oh, did you feel that?” and then may try to continue with treatment. If the patient reacts again when the mesiobuccal dentin is touched with the bur, the dentist may try to work around the pain the patient is feeling by saying, “I’ll be done in a minute.” Such a situation would not make a good day for the dentist or patient.

IN CONCLUSION, commencing with treatment without confirming anesthesia may add apprehension for the dentist and patient because neither one knows if the tooth is anesthetized.
Confirming Pulpal Anesthesia in Nonpainful Vital Teeth

Cold refrigerant or electric pulp testing

A more objective measurement of anesthesia, in nonpainful vital teeth, is obtained with an application of a cold refrigerant of 1,1,1,2-tetrafluoroethane or by using an electric pulp tester (EPT). Cold refrigerant or the EPT can be used to test the tooth under treatment for pulpal anesthesia prior to beginning a clinical procedure.17–20 A dental assistant could test the tooth to determine when pulpal anesthesia is obtained and then inform the doctor that treatment can be started.

In a very anxious patient, the use of pulp testing may cause a very painful reaction. Apprehensive patients can become sufficiently keyed up to react to even minimal stimulation. They may say, “Of course I jumped, it hurts!” or “It’s only normal to jump when you know it is going to hurt.”

IN CONCLUSION, pulp testing with a cold refrigerant or an EPT will indicate if the patient has pulpal anesthesia. For anxious patients, pulp testing may need to be postponed until the patient can be conditioned to accept noninvasive diagnostic procedures.

Cold testing

A cold refrigerant tetrafluoroethylene (Hygenic Endo-Ice, Coltène/Whaledent) (Fig 1-4) can be used to test for pulpal anesthesia before commencing drilling on the tooth. The technique for cold testing is quick and easy; it takes only seconds to complete and does not require special equipment. Once the patient is experiencing profound lip numbness, the cold refrigerant is sprayed on a large cotton pellet held with cotton tweezers21 (Fig 1-5). The cold pellet is then placed on the tooth (Fig 1-6). If clinical anesthesia has been successful, applications of cold refrigerant should not be felt. If the patient feels pain with application of the cold, supplemental injections should be given. If no pain is felt with
Alternate Injection Locations

Gow-Gates and Vazirani-Akinosi techniques

The Gow-Gates technique\(^7\) (Fig 2-15) has been reported to have a higher success rate than the conventional IANB.\(^{34,98}\) However, experimental studies have failed to show that the Gow-Gates technique is superior\(^{14,29,99–102}\) (Fig 2-16).

Akinosi introduced his technique for mandibular anesthesia in 1977,\(^{103}\) while Vazirani had also described a similar technique in 1960,\(^{104}\) and so the name was changed to reflect both contributions.\(^{34}\) The Vazirani-Akinosi\(^{34,103}\) technique (Fig 2-17) has also not been found to be superior to the standard inferior alveolar injection.\(^{14,99,105–107}\) Goldberg and coauthors\(^{14}\) compared the degree of pulpal anesthesia obtained with the conventional, the Gow-Gates, and the Vazirani-Akinosi techniques in vital,
asymptomatic teeth using 3.6 mL of 2% lidocaine with 1:100,000 epinephrine. They found that for the subjects who achieved lip numbness, the conventional IANB was similar to the Gow-Gates and Vazirani-Akinosi techniques regarding anesthetic success (Fig 2-18). However, the Gow-Gates and Vazirani-Akinosi techniques had a slower onset of pulpal anesthesia when compared with the conventional technique. These techniques do not replace the conventional IANB.

When a patient presents with trismus or limited mandibular opening, the Vazirani-Akinosi technique can be used because the mouth is closed during the injection. Neither technique is better than the conventional IANB in reducing the pain of injection.14,99,100,108

IN CONCLUSION, neither the Gow-Gates technique nor Vazirani-Akinosi technique is better than the conventional inferior alveolar technique.

Incidence of buccal nerve anesthesia

Gow-Gates87 and Akinosi103 state that a separate buccal injection is not required for soft tissue anesthesia with their techniques. Goldberg and coauthors14 reported the incidence of buccal nerve anesthesia was 84% with the Gow-Gates technique and 80% with the Vazirani-Akinosi technique using 3.6 mL of 2% lidocaine with 1:100,000 epinephrine. Previous studies have found an incidence of 62%,109 68%,102 77%,98 78%,110 20%,100 and 89%101 for buccal nerve anesthesia with the Gow-Gates technique. For the Vazirani-Akinosi technique, previous studies have found that buccal nerve anesthesia occurred 80%105 and 71%111 of the time. Generally, some buccal nerve anesthesia can be obtained with these techniques because the long buccal nerve can be anesthetized as it crosses the anterior border of the mandibular ramus112 if anesthetic solution is deposited as the needle is inserted or withdrawn or if enough volume is injected to diffuse to the nerve. Regardless of the incidence reported for these techniques, buccal nerve anesthesia was not 100%. Therefore, a separate long buccal injection should be given when soft tissue anesthesia is required in the molar teeth.

IN CONCLUSION, buccal nerve anesthesia is not complete with the Gow-Gates or Vazirani-Akinosi techniques.

Incisive nerve block at the mental foramen

Nist and coauthors,7 Joyce and Donnelly,113 and Whitworth and coauthors114 demonstrated that the incisive nerve block (Fig 2-19) alone is reasonably successful in anesthetizing premolars whether the mental foramen is entered or not. The duration of pulpal anesthesia was 20 to 30 minutes2,113 (Fig 2-20). Batista da Silva and coauthors115 demonstrated that a 4% articaine formulation was better than a lidocaine formulation for the incisive nerve block but only used a volume of 0.6 mL, which resulted in a duration of anesthesia of approximately 10 minutes.
Index

Page numbers followed by “f” denote figures; “t” denote tables

A
Accessory nerve, 50–51
Acetaminophen, 159
Air abrasion, 21
Alcohol addiction, 9
Allergies, 9–10
Alveolar nerve block
 anterior middle superior, 82f, 83–84
 inferior. See Inferior alveolar nerve block
 palatal–anterior superior, 79, 82, 82f
 posterior superior, 75, 75f, 157
Amitriptyline, 144
Anesthetic failure, 30
Anesthetics
 allergies to, 9
 classification of, 7–8
 dosages for, 6t, 7
 intraligamentary injection, 95
 long-acting, 112–113
 types of, 6t, 7–8
 vasoconstrictors and, 56–57
Anesthetic success, 29
Anesto system, 103–104, 104f
Anterior middle superior alveolar nerve block, 82f, 83–84
Anterior superior alveolar nerve block, 79, 82, 82f
Anterior teeth. See also specific teeth
 articaine infiltration of, 44
 lidocaine infiltration of, 44, 45f
Antidepressants, 14
Anxiety, 8, 10–11
Aromatherapy, 11
Articaine
 buccal infiltration of, 56, 90
 description of, 36–37
 dosage of, 6t
 duration of action, 97t
 epinephrine with, 69–71, 70f
 inferior alveolar nerve block using, 37, 134–135, 137
 intraligamentary infiltration of, 138
 in irreversible pulpitis patients, 134–135, 139–140
 lidocaine versus, 44
 lingual infiltration of, 137
 mandibular infiltration of, 44–47, 90, 91f, 121
 maxillary infiltration of, 134
 Aspiration, 34
 Augmentation, 74
 Avulsion, 97–98
B
Barbed needles, 17, 17f
Beta-blocking agents, 14
Bidirectional technique, 54, 55f
Bifid mandibular canals, 54
Breastfeeding, 9
Buccal infiltrations, 56, 90, 136–137
Buccal nerve anesthesia, 34, 41, 136
Buffering, of anesthetic solutions, 19, 39, 39f
Bupivacaine, 6t
 mandibular infiltrations using, 37–38
 maxillary infiltrations using, 71–72
 prolonged postoperative analgesia caused by, 72
Canine anesthesia
 mandibular, 30t–31t, 33, 33f, 124, 125f, 153, 154f
 maxillary, 78f, 80f–82f, 155–156, 156f
Carbonated anesthetic solutions, 49, 50f
Cardiovascular disease, 12
Cartridges, 7, 7f
Central core theory, 56f
Central incisor anesthesia
 mandibular, 30t–31t, 33, 33f, 124, 125f, 153, 154f
 maxillary, 70f, 78f, 80f–81f, 125–126, 126f, 155–156, 156f
Cheek numbness, 67
Cocaine, 14
Cold refrigerator, for confirming anesthesia, 3f, 3–4, 121, 132
Comfort Control syringe, 104, 105f
Compassion fatigue, 7
Central core theory, 56f
Consultation, 13
Controlled-release drug delivery systems, 160
Counterstimulation and distraction, 20
Cross innervation, 54
Crowns, cold refrigerator testing on, 4, 132–133
Dichlorodifluromethane, 132
Diphenhydramine, 50, 50f
Dosages, 6t, 7
Drug interactions, 13–14
Endodontic therapy
 confirming pulpal anesthesia, 131–133
 debridement, 160
 intrapulpal anesthesia, 143–144
 pain in, 133–134, 141–142
 partially vital teeth, 142, 143f
 supplemental anesthesia for. See Supplemental anesthesia
Epinephrine, 6t
 articaine with, 69–71, 70f
 bupivacaine with, 71f, 71–72
 concentration increases, 73–74
 contraindications, 12
 duration of action, 97t
 inferior alveolar nerve block success affected by, 49
 injection discomfort with solutions containing, 15–16
 metabolism of, 13
 prilocaine with, 35, 69, 69f
 sensitivity to, 112
Etidocaine, 37–38
Extraoral infraorbital nerve block, 77f–78f, 77–78
First molar anesthesia
buccal and palatal infiltration of, 84, 84f, 90
mandibular
algorithm for, 120f, 150f
articaine infiltration for, 45–47, 46f–47f, 56, 90
clinical tips for, 120–121, 150–152
inferior alveolar nerve block for, 45f, 55f, 95f
intraosseous injections for, 107f–108f
lidocaine infiltration for, 45, 46f
methods of, 30t–31t, 32, 32f, 34f
peripheral nerve stimulator for, 53f
supplemental anesthesia indications, 121
maxillary, 66–67, 68f, 70f, 73f–74f, 78f, 80f–81f, 84, 84f

First premolar anesthesia
mandibular, 30t–31t, 32, 32f, 123f, 123–124, 152–153
maxillary, 66, 67f, 73f, 78f, 80f–81f

Gender, 8–9
Genetics, 8
Gow-Gates technique, 40f, 40–41, 135
Greater palatine second division nerve block, 78–79, 79f–80f

Heart rate, 110–112
High tuberosity second division nerve block, 79, 79f, 81f
Hyaluronidase, 49, 49f
Hypersensitivity reactions, 9
Hyperthyroidism, 12–13

Ibuprofen, 159
Incisive nerve block, 41f–42f, 41–43
Incisor anesthesia. See also Central incisor anesthesia; Lateral incisor anesthesia
mandibular
articaine infiltration for, 44f
clinical tips for, 124, 125f, 134–135, 137
incise nerve block for, 42f
inferior alveolar nerve block for, 45f
methods of, 30t–31t, 33, 33f
maxillary, 66, 67f, 70f, 73f–74f, 80f–81f, 99f, 125–126, 126f, 155–156, 156f
Indomethacin, 159
Inferior alveolar nerve block
accuracy of, 52–54, 53f
anesthetic agents for, 8
anesthetic volume, 48–49
articaine, 37, 134–135, 137
aspiration before, 34
average needle depth for, 54
buccal nerve anesthesia with, 34
conscious sedation before, 11
conventional, 29–34
epinephrine concentration effects on, 49
failed, 50–55, 141–142
incise nerve block and, 43, 43f
injection pain caused by, 14–15
intraligamentary injection versus, 95
intraosseous injections after, 109, 109f, 121, 142
in irreversible pulpitis, 158–160
lidocaine infiltration after, 44, 45f, 137
lip numbness after, 1, 33–34
mechanisms of failure, 50–55
missed, 33
nerve injury after, 17
pain associated with, 136
prolonged postoperative analgesia, 72
pulpal anesthesia secondary to, 30–33, 31t, 32f–33f
ropivacaine for, 38, 39f
soft tissue anesthesia after, 1, 33–34
success of, 29, 30t, 48–50
supplemental anesthesia, 130, 131, 136, 137, 142. See also Supplemental anesthesia
Infiltration anesthesia. See Mandibular infiltration; Maxillary infiltration
Intraorbital nerve block
extraoral, 77f–78f, 77–78
intraoral, 76f–77f, 76–77
Injection(s). See also specific injection anxiety caused by, 10
dentist reaction to, 5
Gow-Gates technique, 40f, 40–41, 135
patient reaction to, 5
phases of, 14–15
slow, 16
two-stage, 16–17
Vazirani-Akinosi technique, 40f, 40–41
Injection pain
alternative modes of reducing, 19–21
articaine versus lidocaine solutions, 70
buccal nerve block, 136
cooling of site to reduce, 19
description of, 14–18
inferior alveolar nerve block, 136
intraligamentary, 138–139
intraosseous, 141
needle size effects on, 15, 16f
technique effects on, 16–17
IntraFlow system, 104, 105f, 140
Intraligamentary injections, 57, 58f, 91–99, 92f–96f, 97t, 122, 124, 128, 137–139
Intraoral infraorbital nerve block, 76f–77f, 76–77
Intraosseous injections
considerations for, 105–110
description of, 56–57, 99f
duration of, 108–109
after inferior alveolar nerve block, 109, 109f, 121, 142
infiltration injections versus, 99, 99f
in irreversible pulpitis, 139–142
maxillary anterior teeth, 126
maxillary posterior teeth, 122, 127–128
pain associated with, 141
in partially vital teeth, 142, 143f
postoperative effects of, 113–114
in pulp necrosis, 142–143, 143f
repeating of, 141
success of, 140
systemic effects of, 110–113
systems for, 100–104, 139–140
Intrapulpal anesthesia, 143–144
Irreversible pulpitis
algorithm for, 150f
anesthesia success in, 131, 134–135
clinical tips for, 149–150, 150f
confirming pulpal anesthesia in, 132–133
failure of anesthesia in, 135
inferior alveolar nerve block in, 158–160
mandibular anesthesia in, 150–153, 150f–153f
maxillary anesthesia in, 154–156, 155f–156f
supplemental anesthesia in
infiltrations, 136–137
intraligamentary injections, 137–139
intraosseous injections, 139–142
intrapulpal anesthesia, 143–144
Jet injection, 19f, 19–20
K
Ketorolac, 160

L
Lasers, 21
Lateral incisor anesthesia
mandibular, 30t–31t, 33, 33f, 124, 125f, 153, 154f
maxillary, 66, 67f, 70f, 73–74f, 78f, 80f–81f, 99f, 125–126, 126f, 155–156, 156f
Latex allergies, 10
Levobupivacaine, 38
Levonordefrin, 13, 35, 69, 70f, 97t, 110
Lidocaine
articaine versus, 44
classification of, 9
dosages of, 6t
duration of action, 97t
epinephrine with, 6t, 35, 65–66, 72–73, 107–108
after inferior alveolar nerve block, 44, 45f, 137
in irreversible pulpitis patients, 134, 139
mandibular infiltrations, 44–45
maxillary infiltrations, 134
meperidine and, 50, 51f
plasma levels of, 113
topical, 18
Lingual nerve injury, 17
Lip numbness, 1, 10, 33–34, 38, 67, 105–106, 131
Long-acting agents, 7–8, 37–39

M
Mandibular anesthesia. See also specific mandibular teeth
incisive nerve block, 41f–42f, 41–43
inferior alveolar nerve block. See Inferior alveolar nerve block
Mandibular infiltration
articaine, 44–47, 90, 91f
lidocaine, 44–45
Mannitol, 57–58, 58f
Maxillary anesthesia. See also specific mandibular teeth
anterior middle superior alveolar nerve block, 82f, 83–84
infraorbital nerve block
extraoral, 77f–78f, 77–78
intraoral, 76f–77f, 76–77
pain associated with, 15
palatal–anterior superior alveolar nerve block, 79, 82, 82f
palate, 84–85
posterior superior alveolar nerve block, 75, 75f
second division nerve block, 78–79, 79f–81f
Maxillary infiltration
articaine, 69–71, 70f
epinephrine, 65–66, 71f, 71–74
lidocaine with epinephrine, 65–66
mepivacaine, 68–69
prilocaine, 68–69
pulpal anesthesia with, 66–67, 67f–68f, 72–74, 73f–75f
repeating of, 74, 74f, 91
volume of, 72–73
Melanocortin-1 receptor, 8
Mental foramen, incisive nerve block at, 41f–42f, 41–43
Meperidine, 50, 51f
Mepivacaine
description of, 6t, 13
duration of action, 97t
intraosseous injections of, 108, 139
levonordefrin and, 69, 70f
mandibular infiltration using, 34–35, 57
maxillary infiltration using, 68–69
prilocaine and, 34–35, 68
systemic effects of, 112
Methemoglobinemia, 36
Methylprednisolone acetate, 160

Middle superior alveolar nerve, 75
Molar anesthesia
mandibular, 30t–31t, 32, 32f, 34f, 37, 120f, 120–122, 122f, 150f.
See also First molar anesthesia
maxillary, 66–67, 68f, 73–74f, 78f, 80f–81f, 84, 84f, 126–128, 127f, 154f, 154–155
Monoamine oxidase inhibitors, 13–14
Mucosal “sticks,” 1, 2f
Mylohyoid nerve, 50–52, 51f

N
Necrotic pulp, 142–143, 143f, 156–157
Needles
barbed, 17, 17f
bevel of, 54, 55f
broken, 17–18
deflection of, 54
depth of, for inferior alveolar nerve block, 44
intraosseous, 108, 139
levonordefrin and, 69, 70f
mandibular infiltration using, 34–35, 57
maxillary infiltration using, 68–69
prilocaine and, 34–35, 68
systemic effects of, 112
Methemoglobinemia, 36
Methylprednisolone acetate, 160

Neuropathy, 36
Nitrous oxide, 11
Noncontinuous anesthesia, 31
Numbness, lip, 1, 10, 33–34, 38, 67, 105–106, 131
Long-acting agents, 7–8, 37–39

O
Onpharma Onset system, 39, 39f
OraVerse, 10, 10f

P
Pain
anticipated, 133
anxiety effects on, 10–11
in endodontic therapy, 133–134
injection-related. See Injection pain
pressure versus, 5
Palatal anesthesia, 84–85
Palatal–anterior superior alveolar nerve block, 79, 82, 82f
Para-aminobenzoic acid, 36
Paresthesia, 36
Parkinson disease, 14
Partially vital teeth, 142, 143f
Patient
reaction to injections by, 5
satisfaction of, 11, 133
Perciapol radiolucencies, 142–143, 156–157
Periodontal pocketing, 107, 107f
Peripheral nerve stimulator, 51f, 51–52
Phentolamine mesylate, 10, 122, 126
Pheochromocytoma, 12
Plain solutions, 34–35
Posterior superior alveolar nerve block, 75, 75f, 157
Pregnancy, 9
Premolar anesthesia. See also First premolar anesthesia; Second premolar anesthesia
mandibular, 30t–31t, 32, 32f, 42f, 42–43, 152–153
maxillary, 66, 67f, 73f, 78f, 80f–81f, 126–128, 127f, 154–155, 155f
Pressure, 5
Pressure syringe, 91–92
Prilocaine
classification of, 9
dosage of, 6t
duration of action, 97t
epinephrine with, 35, 69, 69f
mepivacaine and, 34–35, 68
pain reductions using, 16
Pulpal anesthesia
confirming of, 1–5, 131–133
factors that affect, 1
intraoral, 97t

Index.indd 167 9/8/11 10:11 AM
mandibular
duration of, 31
onset of, 30
success of, 29
time course of, 31–33, 32f–33f
maxillary
duration of, 66, 72–74, 73f–75f, 126–127
epinephrine concentration increase effects on, 73–74
onset of, 66
solution volume increase effects on, 72–73, 73f

time course of, 66–67, 67f–68f
Pulpal necrosis, 142–143, 143f, 156–157
Pulpitis. See Irreversible pulpitis
Pulpotomy, 160

R
Red hair phenotype, 8
Reversing soft tissue numbness, 10, 122, 126
Ropivacaine, 38, 39f
Rotary polymer bur, 21

S
Second division nerve block, 78–79, 79f–81f
Second molar anesthesia, 30t–31t, 32, 32f, 121–122, 122f, 150f, 150–152
Second premolar anesthesia, 30t–31t, 32, 32f, 123–124, 152–153
Sedation, conscious, 11, 133, 158–159
Short-acting agents, 7–8
Soft tissue anesthesia, 33–34, 84–85
Soft tissue testing, for confirming anesthesia, 1, 2f, 131
Stabident system, 100f–101f, 100–101, 105–107, 114, 139–140
STA system, 93
Sulfites, 10

Supplemental anesthesia
canines, 153
first molars, 121, 151–152
incisors, 153
infiltration injections, 89–91
intraligamentary injections, 57, 58f, 91–99, 92f–96f, 97t, 122, 124, 128, 137–139
intraosseous injections. See Intraosseous injections
irreversible pulpitis. See Irreversible pulpitis, supplemental anesthesia in
molars, 121–122, 151–152, 154–155
premolars, 152–153
second molars, 122, 151–152

T
Tachyphylaxis, 74
Tetrafluoroethylene, 3, 132
Tetrodotoxin, 5, 135
Topical anesthetics, 18, 144
Transcutaneous electrical nerve stimulation, 21
Triazolam, 133, 158–159
Trigeminal nerve, 82f

Two-stage injections, 16–17

V
Vasoconstrictors, 12–14, 35, 56–57, 112
Vazirani-Akinosi technique, 40f, 40–41
Vibrating attachment, 20, 21f
Voltage-gated sodium channels, 5

X
X-Tip system, 101–102, 102f, 105–106, 113–114, 140